Distributionally robust mixed integer linear programs: Persistency models with applications
نویسندگان
چکیده
In this paper, we review recent advances in the distributional analysis of mixed integer linear programs with random objective coefficients. Suppose that the probability distribution of the objective coefficients is incompletely specified and characterized through partial moment information. Conic programming methods have been recently used to find distributionally robust bounds for the expected optimal value of mixed integer linear programs over the set of all distributions with the given moment information. These methods also provide additional information on the probability that a binary variable attains a value of 1 in the optimal solution for 0-1 integer linear programs. This probability is defined as the persistency of a binary variable. In this paper, we provide an overview of the complexity results for these models, conic programming formulations that are readily implementable with standard solvers and important applications of persistency models. The main message that we hope to convey through this review is that tools of conic programming provide important insights in the probabilistic analysis of discrete optimization problems. These tools lead to distributionally robust bounds with applications in activity networks, vertex packing, discrete choice models, random walks and sequencing problems, and newsvendor problems. ∗Engineering Systems and Design, Singapore University of Technology and Design, Singapore 138682. Email: li [email protected] †Engineering Systems and Design, Singapore University of Technology and Design, Singapore 138682. Email: natarajan [email protected] ‡Department of Decision Sciences, NUS Business School, Singapore 117591. Email: [email protected] §Lee Kong Chian School of Business, Singapore Management University, Singapore 178899. Email: [email protected]
منابع مشابه
Decomposition Algorithms for Two-Stage Distributionally Robust Mixed Binary Programs
In this paper, we introduce and study a two-stage distributionally robust mixed binary problem (TSDR-MBP) where the random parameters follow the worst-case distribution belonging to an uncertainty set of probability distributions. We present a decomposition algorithm, which utilizes distribution separation procedure and parametric cuts within Benders’ algorithm or Lshaped method, to solve TSDR-...
متن کاملK-adaptability in two-stage distributionally robust binary programming
We propose to approximate two-stage distributionally robust programs with binary recourse decisions by their associated K-adaptability problems, which pre-select K candidate secondstage policies here-and-now and implement the best of these policies once the uncertain parameters have been observed. We analyze the approximation quality and the computational complexity of the K-adaptability proble...
متن کاملBranch and Price for Chance Constrained Bin Packing
This article considers two versions of the stochastic bin packing problem with chance constraints. In the first version, we formulate the problem as a two-stage stochastic integer program that considers item-tobin allocation decisions in the context of chance constraints on total item size within the bins. Next, we describe a distributionally robust formulation of the problem that assumes the i...
متن کاملOn distributionally robust joint chance-constrained problems
Introduction: A chance constrained optimization problem involves constraints with stochastic data that are required to be satisfied with a pre-specified probability. When the underlying distribution of the stochastic data is not known precisely, an often used model is to require the chance constraints to hold for all distributions in a given family. Such a problem is known as a distributionally...
متن کاملConic Programming Reformulations of Two-Stage Distributionally Robust Linear Programs over Wasserstein Balls
Adaptive robust optimization problems are usually solved approximately by restricting the adaptive decisions to simple parametric decision rules. However, the corresponding approximation error can be substantial. In this paper we show that two-stage robust and distributionally robust linear programs can often be reformulated exactly as conic programs that scale polynomially with the problem dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- European Journal of Operational Research
دوره 233 شماره
صفحات -
تاریخ انتشار 2014